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Abstract

Path modeling for video surveillance is an active area
of research. We address the issue of Euclidean path mod-
eling in a single camera for activity monitoring in a multi-
camera video surveillance system. The paper proposes (i) a
novel linear solution to auto-calibrate any camera observ-
ing pedestrians and (ii) to use these calibrated cameras to
detect unusual object behavior. During the unsupervised
training phase, after auto-calibrating a camera and metric
rectifying the input trajectories, the input sequences are reg-
istered to the satellite imagery and prototype path models
are constructed. This allows us to estimate metric informa-
tion directly from the video sequences. During the testing
phase, using our simple yet efficient similarity measures,
we seek a relation between the input trajectories derived
from a sequence and the prototype path models. We test
the proposed method on synthetic as well as on real-world
pedestrian sequences.

1. Introduction

In path modeling and surveillance, our purpose is to
build a system that, once given an acceptable set of trajec-
tories of objects in a scene, is able to build a path model.
We aim to learn the routes or paths most commonly taken
by objects as they traverse through a scene. Once we have
a model for the scene, the method should be able to classify
incoming trajectories as conforming to our model or not.
Moreover, as common pathways are detected by clustering
the trajectories, we can efficiently assign detected trajectory
its associated path model, thereby only storing the path label
and the object labels instead of the whole trajectory set, re-
sulting in a significant compression for storing surveillance
data.

The task of path surveillance through a single camera
into two steps. The first step is the removal of projective
distortion from the object trajectories once the camera is
calibrated. Original work on camera calibration using van-
ishing points started from the seminal paper by Caprile and

∗The support of the National Science Foundation(NSF) through the
Grant # IIS-0644280 is gratefully acknowledged.

Torre[4]. Liebowitz et al.[10] developed a method to com-
pute the camera intrinsics by using the Cholesky Decom-
position [6]. Lv et al.[11] were the first to propose calibra-
tion by recovering the horizon line and the vanishing points
from observed walking humans. However, their formula-
tion does not handle robustness issues. Recently Krahnsto-
ever and Mendonça[9] proposed a Bayesian approach for
auto-calibration by observing pedestrians. Foot-to-head ho-
mology is decomposed to extract the vanishing point and
the horizon line for calibration. However, their method re-
quires prior knowledge about unknown calibration parame-
ters and prior knowledge about the location of people; their
algorithm is also non-linear.

Path model is created for once the object trajectories are
metric rectified. Grimson et al. [5] records object parame-
ters like the position, direction of motion, velocity size and
aspect ratio of each connected region which are then used to
classify the objects. Boyd et al. [3] demonstrate the use of
network tomography for statistical tracking of activities in a
video sequence. Recently [14] uses the 3D structure tensor
for representing global patterns of local motion. Makris and
Ellis [12] develop a spatial model to represent the routes in
an image. Once a trajectory of a moving object is obtained,
it is matched with routes already existing in a database using
a simple distance measure. If a match is found, the existing
route is updated by a weight update function. One limita-
tion of this approach is that only spatial information is used
for trajectory clustering and behavior recognition.

In this paper, we present a novel linear method to met-
ric rectify object trajectories by observing pedestrians in a
scene(Section 2). A novel application of Normalized-cuts
is used to cluster the rectified trajectories in to distinct paths
(Section 3). Once the trajectories are clustered, we extract
meaningful features to build our model and check the con-
formity of a test trajectory to our built path model (Section
4). We rigourously test the proposed method on real and
synthetic data and the results are encouraging (Section 5).
We also demonstrate an application of the proposed method
for registration to the satellite imagery (Section 6).
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Figure 1. Observing pedestrians: Each of the two instances of a
pedestrian can be assumed to be a stationary camera. Then, the
two cameras define an epipolar geometry between them. See text
for more details.

2. Training Phase
Our goal in the training phase is to first: calibrate the

camera so that the extracted object trajectories are metric
rectified. Second, to cluster the input trajectories and a build
a model based on our features (Section 3) which are then be
used to test the incoming trajectories.

2.1. Induced fundamental matrices

The fundamental matrix satisfies the condition that for
any pair of corresponding points x ←→ x′ (in two images):

x′TFx = 0 (1)

where the point x′T is mapped to a line l = Fx in the other
image such that x′Tl = 0 [6]. An important concept is the
epipole - the image in one view of the camera center of the
other view (cf. Fig 2a). It is also the vanishing point of
the baseline (i.e. the line joining the two camera centers)
direction. The epipole e is given as the right null-vector of
F: Fe = 0. Similarly, e′ is the left null-vector of F.

As an object or a pedestrian of height h traverses the
ground plane, each location on this plane corresponds to
exactly one location on the head plane. As shown in Fig.
1, the head of the pedestrian is labeled as Ti, while the
feet as Bi, where i = 1, 2, . . . , n; n being the number of
frames in which the pedestrian is visible. Without loss of
generality, for a simple case of two frames, this head-to-feet
correspondence can be mapped by a fundamental matrix.

A special case of fundamental matrix is induced by the
pedestrian movements in our scene. The key idea is: in-
stead of considering translation of the pedestrians (any two
instances can be considered as being translating), one may
equivalently consider the situation in which the camera un-
dergoes translation, and the world is stationary. This is as
depicted in Fig.1. This re-formulation of the problem al-
lows us to introduce the concept of fundamental matrix into
our problem. Each instance of a pedestrian (head and feet
location) can be treated as one single image. Therefore, in

our case, when the motion of the camera is pure transla-
tional, the fundamental matrix has the form:

Fh = [e′]×KRK−1 = [e′]× (2)

where R = I, [e′]× is the skew-symmetric matrix represen-
tation of the epipole and Fh is defined as TT

i FhTj = 0,
where i 6= j. Note that Fh now has only 2 d.o.f., instead of 7
[6], which correspond to the position of the epipole. There-
fore, only two point correspondences, Ti ←→ Tj ,Bi ←→
Bj where i 6= j, should be sufficient to compute Fh. The
two epipoles e and e′ are also collinear.

Fh can be considered as mapping points in a direction
parallel to the ground plane or horizontally. We can also
introduce another fundamental matrix for the vertical direc-
tion such that TT

i FvBi = 0. Thus now we are looking at
the correspondences Ti ←→ Bi. This is shown in Fig. 2b.
The special epipolar geometry arising for a pure translating
camera is depicted in Fig. 2a. As this figure shows, the in-
tersection of the baseline with the image plane is at infinity.
That is, the epipole lies at infinity or the epipole becomes a
vanishing point.

Fig. 2b depicts the unique geometry induced by pedes-
trians. For any two instances of a pedestrian, the 2 d.o.f. Fh

can be estimated by solving the following two linear equa-
tions:

TT
1 FhT2 = 0 (3)

BT
1 FhB2 = 0 (4)

Similarly, Fv can be estimated by solving:

TT
1 FvB1 = 0 (5)

TT
2 FvB2 = 0 (6)

Once the fundamental matrix is determined, the epipole
is computed as the null-vector of the fundamental matrix, as
described above.

As Fig. 2a shows, the epipole eh for Fh lies on the plane
at infinity i.e. it is a vanishing point. Similarly ev is also
a vanishing point. These two vanishing points represent
mutually orthogonal (horizontal and vertical) directions in
world. Therefore, these points are used to enforce orthogo-
nality constraint [6] on the IAC ω:

eT
v ωeh = 0 (7)

Eq. (7) is a linear equation with an unknown parameter
w11 of ω. Once w11 is determined, Cholesky decomposi-
tion is applied to ω to obtain the camera calibration matrix
K.
Determining head/foot locations: We use [7] to extract the
foreground objects from the video sequence. The head and
feet locations are easily estimated by calculating the center
of mass and the second order moment of the lower and the
upper portion of the bounding box of the foreground region
[9].
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Figure 2. (a) Epipolar geometry for pure translating camera (courtesy of [6]). The epipoles lie at infinity. (b) The two fundamental matrices,
Fv and Fh, induced by pedestrians.

2.2. Robust auto-calibration

Eq. (7) provides only one constraint on ω. Unless
we have more information, we can only solve for one un-
known in ω = diag(ω11, ω11, 1). Fortunately, this equa-
tion is linear and therefore can be simplified to the form:
aiw11 + bi = 0, where the subscript i indicates the frame
number. Thus from each image pair we obtain one equation
with one unknown. Equations obtained from a sequence are
used to construct an over-determined system of equations:




a1 b1

...
...

an bn




︸ ︷︷ ︸
Q

[
w11

1

]
= 0 (8)

We want to use robust statistics to recover the best w11

such that K is closest to the actual calibration matrix.
Therefore, to deal with the outliers in the data, Total Least
Squares (TLS) method is adopted to solve the system of
Eqs (8). Given an over-determined system of equations,
TLS problem is to find the smallest perturbation to the data
and the observation matrix to make the system of equations
compatible. A suitable function also needs to be selected
that is less forgiving to outliers, one such example is the
truncated quadratic [2], commonly used in computer vi-
sion. The errors are weighted up to a fixed threshold, but
beyond that, errors receive constant penalty. Thus the influ-
ence of outliers goes to zero beyond the threshold.

We use the truncated Rayleigh quotient to remove outlier
influence. The quotients are estimated as:

ρ(w11) =
n∑ xTAx

xTx
< ξ (9)

where x =
[

w11

1

]
, A =

[
aj

i bj
i

]T [
aj

i bj
i

]
and ξ is

the threshold. The Rayleigh quotients are estimated from
the observation points and the residual errors are estimated.
The threshold ξ is set to the median of all the residual er-
rors. Observation points obtained from Eq. 8 having resid-
ual errors greater than ξ are removed as outliers. After out-
lier removal, the outlier-free remaining observation points
Q are used to construct the over-determined system of Eqs.

(a) (b) (c) (d)
Figure 3. Rectified Trajectories:(b) represents reconstructed tra-
jectories for Seq #2 - shown in (a), while (d) represents Seq #3,
shown in (c), rectified.

(8). The system is then solved using the Singular Value De-
composition (SVD). The correct solution is the eigenvector
corresponding to the smallest eigenvalue.

In summary, in order to minimize the influence of noise
on our observation matrix Q, we apply the Rayleigh quo-
tient to filter out the noisy data points. Once the outliers
are removed, the Total Least Squares method is applied to
the remaining observation points to estimate the unknown
parameter w11 of the IAC.

2.3. Trajectory and Image Rectification

Metric rectified trajectory data presents a truer picture of
the original data. Therefore, once the camera is calibrated,
the object trajectories are metric rectified. The line at infin-
ity l∞ intersects ω at two complex conjugate ideal points I
and J, called the circular points [6]. The conic dual to these
circular points is a degenerate conic and is invariant under
similarity transformation. Once this conic C∗′

∞ is identified,
a suitable rectifying homography is obtained by using the

SVD decomposition: C∗′
∞ = U

[
1 0 0
0 1 0
0 0 0

]
UT where U

is the rectifying projectivity. Fig. 3 depicts some results ob-
tained by rectifying the obtained training trajectories from
two of our three test sequences.

From here on, all references to 2-D trajectories imply
rectified 2-D trajectories. For simplicity and better visu-
alization, the results are still shown on un-rectified image
plane in subsequent sections.

3. Model Building

A typical video sequence consists of a single camera
mounted on a wall or on a tripod looking at a certain loca-
tion. For any object i tracked through n frames, the 2-D im-
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Figure 4. (a) represents a typical scene where an object is travers-
ing an existing path. An average trajectory and an envelope bound-
ary are calculated for each set of clustered trajectories. (b) An ex-
ample of an average trajectory obtained by applying DTW on two
sample trajectories. Blue lines connect corresponding matched
points between the two trajectories.

age coordinates for the trajectory obtained can be given as
Ti = {(x1, y1), (x2, y2), ..., (xn, yn)}. Depending on the
velocity of a person and the location in the image plane, the
trajectories will be of varying lengths. Instead of tracking
the centroid of an object, tracking feet gives more accurate
results for our method.

3.1. Trajectory Clustering
Perceptually, humans tend to group trajectories based on

their spatial proximity. Since we are trying to build a path
model, it is essential that we perform clustering using the
spatial characteristics of the trajectories. One such measure
is the Hausdorff distance. For two trajectories Ti and Tj ,
the Hausdorff distance, D(Ti, Tj), is defined as

D(Ti,Tj) = max{d(Ti,Tj), d(Tj ,Ti))}

where d(Ti,Tj) =
max min

a ∈ Ti b ∈ Tj
‖a− b‖.

One advantage of using Hausdorff distance is that it al-
lows us to compare two trajectories of different lengths. In
order to cluster trajectories into different paths, we formu-
late a complete graph. Each node of the graph represents
a trajectory. The weight of each edge is determined by the
Hausdorff distance between the two trajectories. Spatially
proximal trajectories will have small weights because of
lesser Hausdorff distance, and vice versa. The constructed
complete graph needs to be partitioned; each partition hav-
ing one or more trajectories corresponds to a unique path.
To perform such a partition accurately and automatically,
Normalized-cuts [13] are used recursively to partition the
graph. Normalized-cuts avoid bias for partitioning out small
sets of points and it is also very easy to compute. Fig. 8a-d
shows the results obtained by clustering one of our data set.

3.2. Envelope & Mean Path Construction

Once all the trajectories are clustered into different paths,
we create a spatial envelope for each single clustered path.
An envelope can be defined as the spatial extent of a path
(cf. Fig. 4(a)). Applying Dynamic time Warping (DTW)

algorithm ([8]), where column represent trajectory A and
the row represent trajectory B, pair-wise correspondences
between the two trajectories is determined. Using DTW,
distance at each instance is given by:

S(i, j) = min{S(i− 1, j− 1), S(i− 1, j), S(i, j− 1)}+ q(i, j)

where the distance measure is q(i, j) = e
(−κ(i,j))

σκ +e
(−ij)

σe

2 ,
ij represents the Euclidean distance, σκ represent standard
deviation in spatio-temporal curvature, and σe represent a
suitable standard deviation parameter for the trajectory (in
pixels). This distance measure finds correspondences be-
tween trajectories based on the spatial as well as spatio-
temporal curvature similarity. By pair-wise application of
the above mentioned algorithm on all trajectories of each
path, (i) an envelope is created to represent the spatial ex-
tent of the path, and (ii) a mean trajectory (using DTW) to
represent all trajectories in the path. For two trajectories,
the mid-point of the line joining the matched corresponding
points is taken as the mean path (cf. Figure 4b).

4. Scene Modeling - Test Phase
A path model is developed that distinguishes between

trajectories that are (a) Spatially unlike, (b) Spatially prox-
imal but of different speeds, or (c) Spatially proximal but
crooked. Once the path models are learned as described
above, we extract more features from the trajectories in each
path in order to verify the conformity of a candidate test tra-
jectory.

Spatial Proximity: To verify spatial similarity, member-
ship of the test trajectory is verified to the developed path
model. All points on the candidate trajectory are compared
to the envelope of the path model. The result of this process
is a binary vector with 1 when a trajectory points is inside
the envelope and 0 (zero) when the point is outside the en-
velope. This information is used to make a final decision for
a candidate trajectory along with the spatio-temporal curva-
ture measure. If all candidate trajectory points are outside
the envelope, then this is an outright rejection.

Motion Characteristics: The second step is essential to
discriminate between trajectories of varying motion charac-
teristics. The trajectory whose velocity is similar to the ve-
locity characteristics of an existing route is considered simi-
lar. Velocity for a trajectory Ti(xi, yi, ti) , i = 0, 1, , N−1,
is calculated as:

v′i = (
xi+1 − xi

ti+1 − ti

yi+1 − yi

ti+1 − ti
), i = 0, 1, . . . , N − 1

Mean and the standard deviation of the motion character-
istics of the training trajectories are computed. A Gaussian
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distribution is fitted to model the velocities of the trajecto-
ries in the path model. The Mahalanobis distance measure
is used to decide if the test trajectory is anomalous,

τ =
√

(v′i −m′
p)T (

∑
)−1(v′i −m′

p) < ϕ

where v′i is velocity from the test trajectory, m′
p is the

mean, ϕ a distance threshold, and
∑

is the covariance ma-
trix of our path velocity distribution.

Spatio-Temporal Curvature Similarity: The third step
allows us to capture the discontinuity in the velocity, accel-
eration and position of our trajectory. Thus we are able to
discriminate between a person walking in a straight line and
a person walking in an errant path. The velocity v′i and ac-
celeration v′′i , first derivative of the velocity, is used to cal-
culate the curvature of the trajectory. Curvature is defined
as,

κ =

√
y′′(t)2 + x′′(t)2 + (x′(t)y′′(t)− x′′(t)y(t))2

(
√

x′(t)2 + y′(t)2 + 1)3

where x′ and y′ are the x and y components of the veloc-
ity. Mean and standard deviation of κ’s are determined to
fit a Gaussian distribution for spatio-temporal characteris-
tic. We compare the curvature of the test trajectory with our
distribution using the Mahalanobis distance, bounded by a
threshold. By using this measure we are able to detect irreg-
ular motion. For example, a drunkard walking in a zigzag
path, or a person slowing down and making a u-turn.

In summary, we initially detect non-conforming trajec-
tories on the basis of spatial dissimilarity. In case the given
trajectory is spatially similar to one of the path models, the
similarity in the velocity feature of the trajectories in that
path and the given trajectory is computed. If the motion fea-
tures are also similar then a final check on spatio-temporal
curvature is made. The trajectory is deemed to be anoma-
lous if it fails to satisfy any one of the spatial, velocity or
spatio-temporal curvature constraints.

5. Results
The proposed system has been tested on three 320× 240

pixels resolution sequences containing a variety of motion
trajectories:

Seq #1: This is a short sequence of 3730 frames with 15
different trajectories forming two unique paths. The clus-
tered trajectories are shown in Fig. 7. Trajectories obtained
for the training sequence are depicted in Fig. 7(a)(b)(c),
representing different behavior of the pedestrians.

Seq #2: A real sequence of 9284 frames with 27 dif-
ferent trajectories forming 3 different paths after clustering.
The length of the trajectories varies from 250 points to al-
most 800 points. The trajectories clustered into paths are
shown in Fig. 8.
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Figure 5. Performance of auto-calibration method VS. Noise level
in pixels: (a) error in focal length. (b) error in the estimated angles.

Figure 6. (a) - (i) from left-to-right: The figure depicts instances
of the data sets used for testing the proposed auto-calibration
method.

Seq #3: The training sequence contains over 20 min-
utes of data forming over 100 trajectories of people walking
around in the scene. The trajectories are clustered into 4
path models, as shown in Fig. 9(a)-(e).

5.1. Evaluating the Auto-Calibration

Synthetic data: Eleven vertical lines of same height but
random locations were generated to represent pedestrians in
our synthetic data. The ends of the lines indicate the head or
the foot locations. We gradually add a Gaussian noise with
µ = 0 and σ ≤ 2 pixels to the data-points and perform 1000
independent trials for each noise level, the results are shown
in Figure 5. The relative error in f increases almost linearly
with respect to the noise level. For a maximum noise of 2
pixels, we found that the error was under 5%. The absolute
error in the rotation angles increases linearly and is well
under 0.5 degrees.

Real Data: As reported by [15], the mean of the esti-
mated focal length is taken as the ground truth and the stan-
dard deviation as a measure of uncertainty in the results.
Due to space limitations, we only show results for the ob-
tained focal lengths.

For Seq #1, the estimated results for f are given in Table
1(left column). The estimated focal length is f = 948.74
with a low standard deviation of σ = 8.7. Seq #2 is an
another sequence used for testing, a couple of instances are
shown in Fig. 6f-g. The estimated focal lengths are very
close to each other, as shown in Table 1(right column - top).
Similarly, results for Seq #3 are shown in Table 1(right
column - bottom).

The error in the results can be attributed to many fac-
tors. One of the main reason is that only a few frames are
used per sequence. The standard deviation for f in all our
experiments is found to be less than reported by [9].
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Seq #1 (f )

Fig. 6a f = 955.31
Fig. 6b f = 938.87
Fig. 6c f = 952.05

Seq #2 (f )

Fig. 6f f = 976.09
Fig. 6g f = 980.24
Seq #3 (f )

Fig. 6f f = 840.68
Fig. 6g f = 837.84

Table 1. The recovered focal length for (starting from the left col-
umn, going clock wise direction) Seq #1, Seq #2 and Seq #3.

(a) (b) (c) (d)
Figure 7. (b)(c) show three clustered path for Seq #1 while (a)
shows all the trajectories in the training phase. (d) demonstrates a
test case where a bicyclist is detected as having unusual behavior.

(a) (b) (c) (d) (e) (f) (g)
Figure 8. (a)-(d) depict the clustered trajectories into paths. (e)-
(g) show instances of a drunkard walking, a person running, and
a person walking, respectively. Red trajectories denote unusual
behavior while the black trajectories are the casual behavior.

5.2. Evaluating path modeling

Result for Seq #1 is shown in Fig. 7(d). The training se-
quence only contained people walking in the scene. But the
bicyclist shown in (d) has motion characteristics different
(containing faster movement) than the training cases, hence
detected as abnormal behavior (displayed in red).

Three test cases from Seq #2 are depicted in Fig. 8(e)-
(g). A person walking in a zig-zag fashion (Fig. 8(e)), and a
person running (Fig. 8(f)) are flagged for an activity that is
considered as an unusual behavior. Fig. 8(g) demonstrates
a case where a person walks at a normal pase in conforming
behavior.

Some of the test cases from Seq #3 are shown in Fig.10.
Two cases in the first two columns contain people walking
at normal pace - following the path model constructed in the
training phase, hence flagged with a black trajectory i.e. ac-
ceptable behavior. Third column is flagged unacceptable as
the person moves left, which is not contained in the model.
Similarly, 4th column contains a golf cart driven across the
scene.

The system gives satisfactory results for our experi-
ments. Although some existing methods do incorporate
model update, we believe this is what leads to a model drift.
That is, after a number of updates the model can become
general enough to accommodate any behavior considering
it as acceptable behavior. But certainly, the applicability
of our proposed system lies in the spheres where there is

(a) (b) (c) (d) (e)
Figure 9. Results from the training sequence of Seq #3: (a) shows
all the trajectories used in the training set. (b)-(e) are the 4 paths
clustered from the input data.

Figure 10. Results for Seq #3. Column 1 and 2 demonstrate nor-
mal behavior, while column 3 and 4 demonstrate two examples of
unacceptable behaviors. See text for more details.

(a) (b) (c)

Figure 11. Image rectification and registration results for Seq # 3.

a defined behavior, differentiable from certain other unac-
ceptable behavior for, lets say, security reasons.

6. Registration to Aerial Imagery
Registration to the satellite imagery gives a global view

of the scene under observation. Once the observed scene
is metric rectified, the only unknown transformation is the
similarity transformation. This rectified image can then be
automatically registered to the aerial image [1]. The results
obtained by rectifying the test sequences are shown in Fig.
11. Due to space limitation, we show results only on Seq
# 3. A frame from the test sequence Seq # 3 is rectified
by using the line at infinity which is obtained as: l∞ =
ωvz . The obtained circular points are used to construct the
conic C∗′

∞ in order to obtain the rectifying projectivity, as
described in Section 2.3. The rectified image is shown in
Fig. 11(b), and the registered image is shown in Fig. 11(c).

Registration of multiple cameras to the satellite image
is shown in Fig. 12. Three cameras were placed at three
different locations along the path shown in the figure. The
proposed method is automated and provides satisfactory re-
sults. Thus for any test sequences, the obtained path model
can be mapped to the corresponding satellite image in or-
der to obtain a global view - representing the behavior of
pedestrians in that particular area.
Retrieving metric information: Generally, the satellite
image contains the world-to-image scale information, as
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Figure 12. Multiple cameras registered to the corresponding satel-
lite image: The input images have a few new structures compared
to the old satellite image.

(a) (b) (c) (d) (e) (f)
Figure 13. Six test cases used to retrieve metric information. See
text for more.

shown in Fig. 12, where 140 pixels correspond to 40 yards.
Five cases are shown in Fig. 13. Fig. 13(a) shows a golf cart
that takes only two seconds to move across the scene - the
true speed obtained from the registered image is found to be
20.369 km/hr. The velocity of the bicycle, as shown in Fig.
13(b), is found to be 12.22 km/hr, whereas for three cases of
pedestrians (i.e. Fig. 13(c)-(e)) the velocity is determined
to be 4.58 km/hr, 3.66 km/hr, and 4.22 km/hr, respectively,
which is very close to the average human walking speed. A
case of a person riding a skate board is shown in Fig. 13(f)
and the retrieved velocity is 9 km/hr.

7. Conclusion
This paper proposes a unified method for path model-

ing, detection and surveillance. We propose a novel lin-
ear method for auto-calibrating any camera that may be in-
volved. After calibration, the trajectory data is metric recti-
fied to represent a truer picture of the data. Metric rectified
observed scene is registered to aerial view to extract metric
information from the video sequence, for example, the ac-
tual speed of an object. Normalized-cuts are then used to
cluster metric rectified input training trajectories into vari-
ous paths. We extract spatial, velocity and spatio-temporal
curvature based features from the clustered paths and use
it for unusual behavior detection. Calibration method and
the path modeling method has been extensively tested on
a number of sequences and have demonstrated satisfactory
results. We plan on using multiple cameras to build path
models in a large scale environment. Recognizing more
complex events by attaching meanings to the trajectories is
also one of our future goals.
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