
Real-time 3D Fire Simulation Using a Spring-Mass Model

Murat Balci∗ Hassan Foroosh
Computational Imaging Lab., Computer Science, University of Central Florida

{balci,foroosh}@cs.ucf.edu

Abstract

We present a method for real-time simulation of 3-
dimensional fire inspired by an old mechanical trick known
as the “silk torch”. Motivated by the proven illusive ef-
fect of silk torch, we model the kinematics of a flames by
a mass-spring system, and its turbulant visual dynamics by
texture sequencing with variable speeds and transparencies
that depend on the speed of the vaporized fuel. The ap-
proach allows for incorporating external forces such as the
gravity, and the wind force for added realism. Also, a spe-
cific characteristic of our method is that any object inserted
in a flame can be modeled simply as an external force in the
mass-spring system, making real-time interactions with fire
a simple addition to the overall system. While the approach
maintains an extremely low computational cost, these flex-
ibilities increase the realism of our 3D fire by allowing for
real-time control and the interactivity, which is a highly de-
sirable requirement in applications such as augmented re-
ality.

1 Introduction

Fire can be defined as a rapid, self-sustaining oxidation
process of combustible gases ejected from a fuel. It is one of
the most important natural phenomena, and still a challeng-
ing one to simulate with computer graphics in real-time and
in a realistic fashion. Its simulation can be used in a wide
variety of important applications such as special effects for
movies, scientific visualization, augmented reality, games,
etc.

Fire simulation techniques in computer vision/graphics
can be broadly classified into two categories. In the first
category are the 2-dimensional methods that generate a fire
effect using a sequence of textures. The sequence, often
rendered on a billboard, is an animation of either real or
synthesized procedural textures [6, 17, 19]. In the most so-
phisticated versions the dynamics of fire are simulated using
Perlin noise or other similar approaches [16]. The advan-
tage of these methods is the simplicity of implementation in

∗The support of the I2Lab in the form of research fellowship is grate-
fully acknowledged.

3D environments, which has made them widely available.
Despite the fact that these texture effects can be associated
with the statistical model of fire turbulence [20], they of-
ten do not blend realistically in a 3D environment. On the
other hand, they require to be always rendered either or-
thogonal to the viewing direction, or alternatively mapped
directly to the rendered image plane. Furthermore, they do
not provide the possibility of interacting with fire, e.g. in a
virtual/augmented reality environment.

In the second category are the 3-dimensional methods
[2,7,8,10,13–15,21]. The primary advantage of these meth-
ods is the added realism in terms of (i) their convincing vi-
sual appearance and dynamics, (ii) modeling of propaga-
tion and expansion, and (iii) the possibility of interacting
with other virtual or real objects. However, different algo-
rithms provide a trade-off between these three aspects. Cen-
tral issues in this category are the representation and mod-
eling of the burning gases in the flames, the model of their
thermodynamics, and the choice of the rendering approach.
Combination of various representations and dynamics have
been proposed in the literature. Some examples include the
earlier work of Reeves [18] using the animation of particle
systems, the use of the physical model of the emission and
transmission [10], evolution of fire front particles on polyg-
onal meshes [14], tomographic modeling and simulation [8]
the use of chain of particles [2], the evolution of blobs based
on a diffusion model [21], and the physics-based modeling
of the vaporized fuel using the Navier-Stokes equations, im-
plicit surfaces, and the level set method [15].

In practice, the model used for simulating a 3-
dimensional fire and its dynamics imposes also a trade-off
between the realism and the rendering speed. For rendering,
most successful methods rely on either surface crawling,
implicit surfaces, volume rendering, or voxelization with
ray-tracing. Although, the visual appeal can be improved
by increased accuracy of simulating the actual physics of
the fire, the computational cost can make the simulation
prohibitively inaccessible to real-time applications. For in-
stance, the seminal work of Nguyen et al. [15] is known to
provide some of the most compelling visual effects based on
the actual physics of the fire in both modeling and render-
ing, but the approach is reported to provide a prohibitively
slow rendering of one frame per 5 minutes [15].

1

The approach proposed in this paper provides an opti-
mal trade-off between realistic visual appearance and real-
time rendering. The idea has its root in an old physi-
cal/mechanical arrangement known as the silk torch, which
is proven to have strong illusive effects on visual perception
of fire.

Figure 1: A mechanical silk torch.

2 Silk Torch

Silk torch is an old trick used originally by magicians in
stage performances to produce the illusive effects even at
close proximity for fooling the spectators. Its origin has also
been traced back to the ancient Greek theatre. Essentially,
silk torch is made of mechanically moving pieces of silk
fabric that together with a source of wind, the gravity, and
a source of light produce astonishingly realistic flickering
effects of a true fire.

In recent years, there has been many applications of this
old trick in interactive theme parks. For instance, Disney
used orange lights on a fan-blown sheet of plastic to sim-
ulate leaping flames in some of their rides. Various forms
of silk torch are now also available as commercial products
for decorative purposes. Figure 1 shows an example of such
product, and illustrates the effectiveness of this mechanical
fire.

Our work is inspired by this ornamental equipment, but
since we are designing a computer silk torch, the actual
kinematics and the visual effects of our silk fabric is based
on the physics of a flame. We call this a “silk flame”. For
instance a large fire may comprise of several silk flames,
each with its associated internal and external forces. In the
next section, we describe how these internal and external
forces are set according to the physics of the combustion,
and how the kinematics of these silk flames varies in time,
based on the physics of fire. This would give a silk flame its
astonishingly realistic look, when rendered with texture se-
quencing and transparencies that reflect the characteristics
of a burning fuel.

3 Modeling the Kinematics
We simulate the our silk flame using a mass-spring model
(see Figure 2). A mass-spring model comprises of a set of
nodes that are connected to adjacent ones by springs [12].
The nodes and the springs undergo displacements and de-
formations based on the forces applied to them. A silk
flame has the additional property that its kinematics are con-
trolled by the physics of combustion process. Combustion
researchers have studied fire’s physical properties in details.
Fuel type (solid, liquid, gaseous), and the type of oxidizers
are some of the main parameters that determine the kine-
matics of the flame [3]. On the other hand, heat is the mea-
sure of the molecular activity within the flames, which af-
fects the speed of molecules. These factors define the com-
bustion process, which in turn defines the internal forces
applied to the flame particles. External forces may include
the wind, the gravity, and interactions with external objects
(whether flammable or not). Our model of the silk flame
incorporates all these factors.

Figure 2: The mass-spring model.

However, it is important to note that in our model, we are
not simulating the exact physics of the flame particles, but
rather our goal is to emulate the motion and the kinematics
of the flame, when it is sustained by a fuel. In particular,
in our case the flame is not truly subject to buoyancy since
the nodes of the mass-spring model do not break away from
the flame. However, they undergo displacements due to the
heat energyE released by combustion. Assuming the con-
servation of energy,E also represents the internal energy
of our mass-spring model, which depends only on the cur-
rent state of the silk flame, i.e. inter-node distances and
velocities. The gradient ofE with respect to the state of a
node (i.e. its position) defines the net internal force applied
to that node, which is internally represented as the sum of
damping, shearing and bending forces associated with the
springs.

The net forcef t
i applied at any timet to the nodei is the

sum of all internal and external forces, and defines the ac-
celeration of the node, and hence its instantaneous velocity

2

vt
i and positionxt

i. The state of the silk flame at timet can
then be formally represented as a single vector

St = [xt,vt] (1)

wherext = [xt
1, ...,x

t
n] andvt = [vt

1, ...,v
t
n], wheren is

the number of nodes in a silk flame. Differentiating this
state vector with repect to time yields

Ṡt = [ẋt, v̇t] (2)

= [vt,at] (3)

whereat = [at
1, ...,a

t
n] is the acceleration vector due to the

forces.
Given the net force applied to this system, we have from

Newton’s second law

Ṡt = [vt,M−1f t] (4)

wheref t = [f t
1 , ..., f t

n] is the net force vector, and

M =




M1 · · · 0
...

. . .
...

0 · · · Mn


 (5)

where the3 × 3 sub-matrixMi = diag(mi,mi,mi), with
mi representing the mass of the nodei.

Equation (4) is an ordinary differential equation. Given
the state of the mass-spring system at timet, our goal is to
formally determineSt+δt, whereδt is a positive short time
interval. Using Euler’s method

Ṡt+δt = St + δtṠt (6)

Leading to

xt+δt = xt + δtvt (7)

vt+δt = vt + δtat (8)

In practice these equations can be solved sequentially, as
follows

vt+δt = vt + δtat (9)

xt+δt = xt + δtvt+δt (10)

Although easy to implement, Euler’s method introduces
some stability issues [1]. In particular, in practice the so-
lution is stable ifδt is smaller than the natural period of the
system. In a mass-spring model, the latter is given by

T ' π

√
mmin
kmax

(11)

wheremmin is the smallest mass in the system, andkmax
is the largest stiffness coefficient among all springs.

A proper simulation typically requires high stiffness (i.e.
high values of spring stiffness coefficients). As a result, the
updating time intervals need to be very small in order to re-
tain the stability of the system. To alleviate this problem
often higher order integration such as fourth-order Rung-
Kutta is used, or implicit integration [1, 4, 11] and hybrid
implicit-explicit methods [5] have been proposed. However,
these solutions are rather very costly, and in the case of the
implicit methods may also lead to solving non-linear prob-
lems.

Our goal, however, is to obtain a real-time simulation. A
good trade-off between stability and the computational cost
can be obtained if we update the velocities indirectly, rather
than using a coupled set of differential equations as in the
Euler’s method. A solution to this problem can be found in
molecular dynamics literature [9], which naturally applies
to our problem. For this purpose, note that by applying the
Taylor series twice as follows:

xt+δt = xt + δtvt +
1
2
δt2at +O(δt3) (12)

xt−δt = xt − δtvt +
1
2
δt2at +O(δt3) (13)

and by adding both sides, we get

xt+δt = 2xt − xt−δt + δt2at (14)

This latter equation allows to update the positions of the
nodes in a spring-mass system, without requiring an explicit
computation of their velocities. Of course, if needed the
velocities can still be approximated using

vt+δt =
xt+δt − xt

δt
(15)

In molecular dynamics, this approach is referred to as the
Verlet integration method [9]. It provides two advantages
over other existing methods. First and foremost, since the
velocities are computed only implicitly, they are always
consistent with node displacements and the process is more
stable. Secondly, it provides a substantial gain in the com-
putational cost, allowing for real time processing and simu-
lation.

The above scheme provides a very simple and efficient
way of updating the state of our spring-mass system. In the
next section, we describe how it can be exploited to provide
the natural flickering effect of a silk torch or a real fire.

4 Modeling Visual Dynamics
Fire may be viewed as a dynamic exchange of matter and
energy sustained by the chemical reactions of a fuel source
with oxidizers. This dynamic behavior is what makes
its simulation challenging from computer graphics point

3

of view. In the previous section, we suggested that the
kinematics of flames can be simulated with a mass-spring
model. However, since this model is only emulating the true
kinematics, very much similar to a mechanical silk torch,
we need to augment its visual appearance with texture, and
transparency. Furthermore the texture and the transparency
must vary dynamically in time and space according to the
characteristics of the combustion process.

Fire is a blackbody radiator. The gaseous medium
ejected from the burning fuel modifies the intensity field of
light by emission, absorption, and scattering. Under equi-
librium, the emission of the gas is proportional to the black-
body emission [3].

Qλ = Eλ
2h

λ5c

(
exp

(
hc

λkT

)
− 1

)−1

(16)

whereEλ reflects the contribution of the wavelengthλ, h is
the Planck’s constant,c is the speed of light,k is the Boltz-
mann constant, andT is the temperature.

Although, a direct use of such physics-based model for
rendering the texture dynamics has been suggested in the lit-
erature [15,21], we prefer not to adopt this line of approach
due to its high computational cost. In particular, we suggest
that important key effects of this model can be closely em-
ulated by using an approach similar to the mechanical silk
torch.

Essentially, if we observe a real fire, we notice that un-
der equilibrium, the wavelength and intensity of light vary
locally within each flame, and also change dynamically in
time. The variations in wavelength result in various colors
from the blue core to yellow, and red in different parts of
the flame. This can be readily captured by either textures
from a real fire, or by procedural textures synthesized by an
algorithm.

The dynamic variations of the intensity field, however,
cannot be done realistically by simple texture mapping. For
this purpose, we need to investigate how the variations in
the intensity field depicted by (16) can be emulated by a
silk flame. The silk flame, of course, undergoes motion and
deformation according to the internal and external forces
as described in the previous section. This, effectively, in-
troduces some level of realism to the texture. However, a
fixed texture on a silk flame would look more like a waving
fabric. To give a compelling fire effect, we therefore need
to let the texture evolve. As is shown in Appendix A, the
black body emission in (16) has a first order Taylor series
approximation of the form

Qλ ' Eλ
2
3

kM

c2λ4R
v2

rms − Eλ
h

λ5c
(17)

In other words, to a first order approximation the black-
body emissions are proportional to the temperature, or

equivalently proportional to the square of the rms molec-
ular speed. It is therefore reasonable to assume that to a
first order approximation the fire texture should also evolve
proportional to the square of the rms molecular speed. This
corresponds to our intuition that a faster moving fire has
also a faster evolving texture and light. Of course in our
simulation the rms molecular speed is computed simply by
taking the rms of nodal speeds in our mass-spring model.

To emulate this effect, we used texture sequencing with
variable transparencies: after initializing the texture of each
silk flame using a randomly chosen image from a set ofN
frames of a fire sequence, we let the texture of each flame
cycle through the sequence at the speed defined by the over-
all kinetic energy of the silk flame, which in turn is deter-
mined by the internal and the external forces in the mass-
spring system. We found that to maintain realism only a
small number of texture images, e.g.N = 8 would be suf-
ficient, independently of the number of silk flames in the
simulated fire. Note that the texture sequence can either be
obtained from a real fire, or alternatively generated in real-
time using a procedural fire texture synthesis that evolves in
time either linearly with the temperature profile of the flame
or quadratically with its speed (advection).

5 Rendering

The proposed method can be considered in two phases: ini-
tialization and the rendering cycle. During initialization,
basic initial settings such as lighting parameters, texture-
mapping parameters, loading the textures, enabling the ver-
tex array functionalities, and the initialization of silk flames
are performed. To obtain a realistic waving effect for the
silk flames, a wind field is associated with each flame. Each
flame wind field includes procedural turbulent effects to ob-
tain realistic results. Other than that, there are no restric-
tions on the other external forces in the environment such
as additional external winds, the gravity, etc.

Rendering Cycle is composed of three steps:

• Updating flame vertices and other flame parameters:
First, update the silk flame meshes, according to the to-
tal forces effecting on each vertices. Secondly, update
the texture of each flame. The texture update speed
should be proportional to the actual speed of the flame.
Third, update the flame wind fields to cause the wav-
ing effect of the flames. Note that unlike a billboard
the turbulent motion of the flame plays an important
role in the realism of the results. This is done by ran-
domely modifying the vector components, which are
orthogonal to the flame sheets.

• Draw opaque environment before rendering the flames
or other transparent objects.

4

• Render the flames. We used vertex arrays, which made
the implementation faster, and the rendering process
easier as mass-spring meshes. For rendering we dis-
abled the depth mask calculations, before rendering
these vertex arrays due to the transparent nature of
flames. The basic algorithm is quite simple, and easy
to implement. Finally, we generated alpha values
based on the original RGB color values of the textures,
leading to more control over transparency.

6 Results and Performance

The computer silk torch approach that we described in the
previous sections does not only generate astonishingly real-
istic fire simulations and behaviors, but also presents vari-
ous advantages over other existing 3-dimensional methods.
In particular, the speed of its real-time operation is supe-
rior (to our best knowledge) to all existing methods. We
obtained 80 frames per second without using any GPU pro-
gramming, or assembly code, and by relying only on stan-
dard OpenGL capabilities. No ray tracing is required either
for visual quality or 3D effects. The silk flames are readily
rendered by standard OpenGL functions, simply by dump-
ing the coordinates of the nodes in the mass-spring model
and their corresponding texture map coordinates at a given
time step.

Of course, like most 3-dimensional techniques one can
interact with the fire (in our case in real-time). For instance,
it is possible to put an object in the flame, and let it catch
fire. For this, since we are using a mass-spring model, we do
not need to perform collision detection, which is typically
highly costly. Instead, we represent the intruding object as
a force field, which of course can modify the state of the
mass-spring models in silk flames.

The user can set the wind field, the gravity (if he/she
wishes so, e.g. for special effects), and also the parameters
for internal forces to control the strength of connectivity of
the mass-spring nodes, e.g. pressure, oxygen level, fuel,
etc. All parameters can be modulated in real-time, and all
simulations run in real-time. The rendering speed is about
80 frames per second at full screen display of1024 × 768,
on a PC with Intel processor of 2.3 GHz. This rendering
time includes all other objects in the fire’s environment, and
the illumination caused by the fire.

We simulated fires with different fuel types, and ex-
perimented with various combustion speeds, wind effects,
and external object interactions. Figure 3 shows different
frames of a burning candle with occasional wind action.
Figure 4 shows an example of a burning solid fuel, with
average rms molecular speed, using 8 real fire textures. An
interesting feature of our approach is that very much similar
to physics based methods [15, 21], external objects such as
a log can be immersed in the flames with realistic results of

fire rolling up from the base of the log. To achieve this ef-
fect, we simply turn off collision detection with silk flames.
This also allows different silk flames to penetrate into each
other, for instance in the case of multiple sources of fuel
(e.g. several burning logs) piled on top of each other. Note,
however, that we have not simulated the burning and con-
sumption of the fuel (i.e. logs would not get consumed and
converted to ashes).

Figure 6 shows an example of different transparency lev-
els and change in flame edges. And Finally, Figure 7 shows
an example of interaction with an external object, where a
match is approached to the flame and caught fire, and then
moved back. Again realistic wind effect are seen in the se-
quence. As described earlier the introduction of the match
is modeled as an external force field that can penetrate in
the silk flame of the candle, and affect the state of the mass-
spring system.

7 Conclusion
We have developed a 3-dimensional fire simulation tech-
nique inspired by the old magicians’ trick of silk torch. In
addition to its compelling visual realism, a computer torch,
as we proposed herein, provides the possibility of incorpo-
rating some of the physics of fire. The physics of combus-
tion is in fact only emulated with our method to provide
photo-realism and interactivity. The technique can be used
in real-time applications while providing high quality vi-
sual effects for applications such as mixed- or augmented-
reality, where visual-fidelity plays an important role in users
belief of immersion in the environment. Real-time realistic
rendering is achieved without any GPU or assembly lan-
guage programming at about 80 frames per second for a
full screen of1024× 768 on a 2.3GHz PC.

Figure 3: Illustration of candle fire and wind.

5

Figure 4: Illustration of a camp fire using 8 real fire textures.

Appendix A: Taylor Approximation of
Balck Body emmission

The combustion process generates and ejects hot gases into
air that get accelerated under internal and external forces.
The kinetic theory relates the pressureP and the volumeV
to the average molecular kinetic energy. Using the ideal gas
law, we get

PV = nRT =
2
3
N

(
1
2
mv2

)
(18)

wheren is the number of moles,R is the universal gas con-
stant,N is the number of atoms,m is the molecular mass,
andv = |v| is the speed.

The average translational kinetic energy of the molecules
is then deduced from above using the Boltzman distribution,
which leads to the following familiar equation in thermody-
namics for the kinetic energy

Eavg =
1
2
mv2 =

3
2
kT (19)

From this, one can then get the root mean square (rms)
molecular speed

vrms =

√
3kT

m
=

√
3RT

M
(20)

Figure 5: Different transparency level and change in flame
edges.

Figure 6: Candle fire lighting a match.

whereM is the molar mass.
A careful inspection of (16) shows that for a given wave-

length, the black-body emission is only a function of the
temperature. Using a Taylor series expansion of (16) with
respect to1

T , we get

Qλ ' Eλ
2h

λ5c

(
λk

hc
T − 1

2
+O(T)

)
(21)

= Eλ
2k

λ4c
T − Eλ

h

λ5c
(22)

which upon substituting from (20), yields

Qλ ' Eλ
2
3

kM

c2λ4R
v2

rms − Eλ
h

λ5c
(23)

Therefore to a first order approximation the black-body
emissions are proportional to the temperature, or equiva-
lently proportional to the square of the rms molecular speed.
It is therefore reasonable to assume that to a first order ap-
proximation the fire texture should also evolve proportional
to the square of the rms molecular speed. This corresponds
to our intuition that a faster moving fire has also a faster
evolving texture and light.

6

Appendix B: Prodedural Texture Syn-
thesis

The approach that we used is as follows. Using two ar-
bitrary seed images from a real fire sequence a synthetic
sequence of arbitrary length is generated. For this purpose,
we model the motion of flame betwen the seed images using
the following probabilistic approach. LetI1 andI2 denote
the two seed images. At any pixel(x, y) we define the fol-
lowing probabilities for the synthesized imageIt:

pr(It
xy|I1

x′y′ , I
2
xy) =

1√
2πσ

exp

(
− (I1

x′y′ − I2
xy)2

2σ2

)

(24)
where pixel(x′, y′) is in some neighborhood of(x, y).
Since the three color channels are orthogonal, we may as-
sign to each channel-color of pixel(x′, y′) a probability ac-
cording to (24). Call thesepr

x′y′ , pg
x′y′ , pb

x′y′ for the RGB
channels. Thenpx′y′ = pr

x′y′p
g
x′y′p

b
x′y′ . This probability

models our belief of which of the neighboring pixels(x′, y′)
is more likely to move to position(x, y) based on observing
the second imageI2. In this way the most probable motion
field is estimated based on two observed images, and used
for evolving one of the seed images. For real-time texture
synthesis, the magnitude of motion vector can b modulated
using the internal energy (i.e. the r.m.s. speed of the mass-
spring system). Once a new image is generated, it replaces
one of the earlier seeds and the whole process can be re-
peated indefinitly to generate arbitrary fire textures. Figure
7 shows an example of the output of the algorithm.

References

[1] D. Baraff and A. Witkin. Large steps in cloth sim-
ulation. InSIGGRAPH ’98: Proceedings of the 25th
annual conference on Computer graphics and interac-
tive techniques, pages 43–54. ACM Press, 1998.

[2] P. Beaudoin, S. Paquet, and P. Poulin. Realistic and
controllable fire simulation. InGRIN’01: No de-
scription on Graphics interface 2001, pages 159–166.
Canadian Information Processing Society, 2001.

[3] L. de Goey and D. Roekaerts.Lecture Notes of the
J. M. Burgerscentrum Course on Combustion. Eind-
hoven University of Technology, Department of Me-
chanical Engineering, 2003.

[4] M. Desbrun, P. Schroder, and A. Barr. Interactive an-
imation of structured deformable objects. InProc. of
the 1999 conference on Graphics interface ’99, pages
1–8, 1999.

Figure 7: Left: a seed image, right: a synthesized image,
bottom another synthesized imaged with superimposed es-
timated motion field.

[5] B. Eberhardt, O. Etzmu, and M. Hauth. Implicit-
explicit schemes for fast anima-tion with particles
systems. InProc. of Eurographics Workshop on
Computer Animation and Simulation, pages 137–151,
2000.

[6] D. S. Ebert, F.K. Musgrave, D.P., K. Perlin, and
S. Worley.Texturing and Modeling: A Procedural Ap-
proach. Morgan Kaufmann Publishers Inc., 2002.

[7] R. Fedkiw, J. Stam, and H.W. Jensen. Visual simula-
tion of smoke. InSIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and in-
teractive techniques, pages 15–22. ACM Press, 2001.

[8] S.W. Hasinoff and K.N. Kutulakos. Photo-consistent
3d fire by flame-sheet decomposition. InProc. ICCV,
pages 1184–1191, 2003.

[9] W. Huang and B. Leimkuhler. The adaptive verlet
method.SIAM J. Sci. Comput., 18(1):239–256, 1997.

[10] M. Inakage. A simple model of flames. InCG In-
ternational ’90: Proceedings of the eighth interna-
tional conference of the Computer Graphics Society
on CG International ’90: computer graphics around
the world, pages 71–81. Springer-Verlag New York,
Inc., 1990.

7

[11] Y.-M. Kang, J.-H. Choi, H.-G. Cho, and D.-H. Lee.
An efficient animation of wrinkled cloth with ap-
proximate implicit integration.The Visual Computer,
17(3):147–157, 2001.

[12] C.K. Koh and Z. Huang. A simple physics model to
animate human hair modeled in 2d strips in real time.
In Eurographics, pages pp. 127–138, 2001.

[13] A. Lamorlette and N. Foster. Structural modeling of
flames for a production environment. InSIGGRAPH
’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages
729–735. ACM Press, 2002.

[14] H. Lee, L. Kim, M. Meyer, and M. Desbrun. Meshes
on fire. InProceedings of the Eurographic workshop
on Computer animation and simulation, pages 75–84.
Springer-Verlag New York, Inc., 2001.

[15] D.Q. Nguyen, R. Fedkiw, and H.W. Jensen. Physically
based modeling and animation of fire. InSIGGRAPH
’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages
721–728. ACM Press, 2002.

[16] K. Perlin. Improving noise. InSIGGRAPH ’02: Pro-
ceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 681–682.
ACM Press, 2002.

[17] J Portilla and E P Simoncelli. A parametric texture
model based on joint statistics of complex wavelet co-
efficients. Int. J. of Computer Vision, 40(1):49–71,
2000.

[18] W. T. Reeves. Particle systems: a technique for mod-
eling a class of fuzzy objects.ACM Trans. Graph.,
2(2):91–108, 1983.

[19] J. Rhoades, G. Turk, A. Bell, A. State, U. Neumann,
and A. Varshney. Real-time procedural textures. In
SI3D ’92: Proceedings of the 1992 symposium on
Interactive 3D graphics, pages 95–100. ACM Press,
1992.

[20] G. Sakas. Modeling and animating turbulent gaseous
phenomena using spectral synthesis.Vis. Comput.,
9(4):200–212, 1993.

[21] J. Stam. Interacting with smoke and fire in real time.
Commun. ACM, 43(7):76–83, 2000.

8

