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Abstract 
A method of registering images at  subpixel accu- 

racy has been proposed, which does not resort to in- 
terpolation. The method is based on the phase corre- 
lation method and is remarkably robust to correlated 
noise and uniform variations of luminance. We have 
shown that the cross power spectrum of two images, 
containing subpixel shifts, is a polyphase decomposi- 
tion of a Dirac delta function. By estimating the sum 
of polyphase components one can then determine sub- 
pixel shifts along each axis. 

1 Introduction 

Image registration is an essential requirement for 
several image analysis issues such as temporal change 
detection, stereo matching, motion analysis and many 
other image sequence analysis. Many of these prob- 
lems require only re istration at  pixel level [5] [B], 
while others [3] [7] [8]f12] [13] [14] depend on the scene 
registration at subpixel accuracy. 

The most commonly used approaches for sub- 
pixel registration require interpolating at  some stage. 
Amongst this class of algorithms we can notably 
mention: correlation interpolation [4] [15], intensity 
interpolation[l5], phase correlation interpolation [lo] 
[15] and the geometric methods [a]. It is obvious that 
the accuracy of these methods depends highly on the 
quality of the interpolation algorithm. 

Methods that do not use interpolation for achiev- 
ing subpixel accuracy, have been more scarce in the 
litterature. Most of these methods, rely on the dif- 
ferential properties of image frames [B] [7] [15]. There 
are, however, several difficulties associated with dif- 
ferential methods: they can only be used when the 
interframe displacements are very small compared to  
intensity variations, image gradient is only approxi- 
mated using finite difference methods and finally these 
methods exhibit high sensitivity to  noise. 

Another class of algorithms are those that are based 

on optimisation [9] [16]. These algorithms implicitly 
use interpolation by allowing somewhat direct passage 
from discrete to  the continuous domain 

In the following section, we will briefly describe 
the phase correlation method. We then present the 
method proposed herein, followed by some error anal- 
ysis. And finally experimental results are provided 
with some concluding remarks a t  the end. 

2 The Phase Correlation Method 

The idea behind this method [lo] is quite simple 
and is based on the Fourier shift theorem [ll] and the 
fact that for two images with some degree of congru- 
ence, the signal power in their cross power spectrum 
is mostly concentrated in a coherent peak located at  
the point of registration while the noise power is dis- 
tributed randomly in some incoherent peaks. 

Let fi(z, y) and fz(x, y) be two functions defined 
on JR2 and: 

s {fl(., Y)) = ~ l ( W z P y )  

s {fz(.,Y)) = FZ(Wz,Wy) 

fZ(Z, Y) = fl(. + 20, Y + Yo) 

where 3 denotes the Fourier transform. 

Let also: 

Then according to  Fourier shift theorem: 

(1) 

F2(w,,w,) = F,(w,,wy) e j ( w z z o + w y y o )  (2) 

Fz(~z1wY) Fi(wz,Wy) - - ej(w,zo+wyyo) 
I F2(Wz,%) F;(Wz,WY) I 

where * denotes the complex conjugate and the left 
hand side is refered to  as the cross power spectrum 
of the two functions (actually their normalized cross 

Or equivalently: 

(3) 
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power spectrum). 

It is now a simple matter to  determine :CO and yo, 
since the inverse Fourier transform of the right hand 
side is a Dirac delta function centered at  (20 ,  yo): 

= qzo, Yo) (4) 
In practice, when dealing with images, f1 and f 2  

are only specified in finite size discretized azrays. Re- 
placing the Fourier transform by its finite size discrete 
version while assuming periodic extension of images 
and also replacing the Dirac delta function by the 
unit impulse, it has been shown [lo] that the above re- 
sults still hold, despite the periodicity assumption and 
the fact that truncated discrete Fourier coefficients are 
employed. 

This method has a remarkable robustness to cor- 
related noise and uniform time varying illumination, 
making it more appropriate in most practical applica- 
tions compared to  classical cross correlation method. 
Besides, using the convolution theorem, it can be eas- 
ily shown that the method can handle blurred images, 
since the blurring kernel would become a multiplica- 
tive factor in the spectral domain and would vanish in 
equation (4). 

However, in the discrete case equation (2) is only 
valid, if the shift vector (z0,yO) is of integer val- 
ues. Therefore, when applied to  discrete images, 
the method would fail to detect non-integer subpixel 
shifts. The only approach, proposed in the literature, 
for adapting the method for subpixel estimation is the 
use of interpolation methods [lo] [15]. 

A second important issue to point out about the 
phase correlation method is that ,  in shifts of pixel or- 
der the inverse Fourier transform of the cross power 
spectrum always contains a single coherent peak, 
at the point of registration] corresponding to  signal 
power, and some incoherent peaks which can be as- 
sumed to be distributed normally over a mean value of 
zero [lo]. The amplitude of the coherent peak is a di- 
rect measure of the degree of congruence between the 
two images. More precisely, the power in the coherent 
peak corresponds to the percentage of overlapping ar- 
eas, while the power in incoherent peaks correspond 
to the percentage of non-overlapping areas. 

3 Subpixel Registration 
Motivated by searching for a method which em- 

bodies advantages of the phase correlation method de- 
scribed above, we will investigate, herein, the possibil- 
ity of extracting subpixel (ie. non-integer) displace- 
ments between two images using their cross power 
spectrum. For this purpose, we will assume that,  at 
some stage, two images with integer value displace- 
ments between them, have been downsampled, re- 
ducing the correspondence between them to subpixel 

values. In the following section, we will, therefore, 
examine the cross power spectrum of two downsam- 
pled images. Downsampling, which can be seen as 
a polyphase decomposition in the spectral domain is 
discussed in [l] [17] for multidimensional cases. 

3.1 Preliminaries 

Consider two images, f ( z ,  y) and f ( z  it 20, ?+ yo), 
where the displacement vector (z0,yo) is an integer 
valued vector. Let also 3 ( f ( z ,y ) )  = F1(wZ,wy)  and 

denote their discrete Fourier transforms. Then the 
corresponding discrete Fourier transforms after down- 
sampling the images by factors of M anld N along z 
and y axes respectively, will be given by ((see [l] [17]): 

5 (f(z + ~ O , Y + Y O ) )  = F ( ~ T . , W y ) e ~ p ( j ( w . ~ ~ O + w y Y o ) )  

(6) 
where U; = 2 + PI w; = 3 + 9 and Q1 and Q2 
are the downsampled spectra. 

Therefore, the cross power spectrum #of the down- 
sampled images will be given by: 

&-E%E:Z$(4 ,U; ) e w ( j ( w l 2 0  +U; Yo )) 
C ( W L  ,w;> = 

=E C H m n ( w L .  ,w;)ezp(j(wlzo +w;Yo)) (7) 

1 M-1 N-1 - MN cm=O Cn=O F(Ldk,wh) 
M-IN-1 

Comparing the above results with those in chap. 
2 of [17] on the polyphase transform of signals, we 
notice that the cross power spectrum of two down- 
sampled images is, merely, a polyphase decomposition 
of a filtered Dirac delta function. Here, the filters 
H,,(w;, U ; )  can be easily identified by substituting 
back U ;  and w;  and rearranging equation (8): 
H m n ( W i ,  U ; )  E::; E::; F(  2 + M ,  2?rm w W Y  + F) 

= F ( %  + 9, 2 + q) (9) 

where IC E [0 . . . M - 13 and 1 E [0 . . .N -- 11. 

It is obvious from this last equation that: 

To identify the bandwidth of each filter H,,, re- 
call that both w, and wy are in [ 0 , 2 ~ ] ,  and hence : 

wk E [%, & + 91 and E [q, + 31. 
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In fact, it is well known [17] that filtering a down- 
sampled image using a bank of filters is equivalent to 
filtering the upsampled version by a single upsampled 
filter and then downsampling the output. This can 
also be easily verified, in our setup, where the cross 
power spectrum is a Dirac delta function filtered by a 
single upsampled filter followed by downsampling the 
output. Figure 1 shows the spatial domain and the 
frequency domain response of such a filter (a 2D sinc 
function in the spatial domain). 

Yi 

i .  

Figure 1: (a) spatial response of overal filter, (b) fre- 
quency response 

in image I 

Overlapped Area 

The main result of this section can, therefore, be 
summarized as follows: 

In general the cross power spectrum of two images is 
a Dirac delta function. However in the case of down- 
sampled images we have shown that the cross power 
spectrum is a filtered Dirac delta function which has 
then been downsampled. The filter has a 2D sinc spa- 
tial response. 
3.2 Estimating the Sum of Polyphase 

Components 

Equation (7),  ideally, provides the cross power spec- 
trum of two downsampled images. We should, how- 
ever, point out that the relation holds under period- 
icity assumption and hence, for two real images with 
subpixel shifts, since the images are only observed in 
one period, we should expect some additive noise due 
to non-overlapped regions. This additive noise will be 
assumed to be distributed normaly over a mean value 
of zero, as was the case for integer displacements [lo]. 
In other words, we will assume to have: 

where q ( z ,  y) is a zero mean Gaussian noise and C, is 
the cross power spectrum with noise. 

In general, the problem could be easily solved if we 
could estimate the polyphase components of the cross 
power spectrum, in which case the problem would re- 
duce to a linear matrix equation, as described in [17]. 
However, using equation (7 , we can, at best, expect to 

than each individual one. We will, however, see that 
this estimate will be sufficient for our purpose. 

estimate the sum of the PO 1 yphase components rather 

From the results obtained in the previous section 
and making use of the Fourier shift theorem, we get: 

, I  

Therefore, if ~ ~ ( 2 ,  y) = 8-l (C,(u~,w~)), then: 

s in ( r (M2  + 20)) sin(7r(Ny + YO)) + v(2, Y) 
(13) 

cq(21 y)= r ( M 2  + 20) n(Ny + yo) 

At the first glance, this last equation seems to be an 
ideal setup for using a Maximum Likelyhood estimator 
for extracting (20, yo). However, decoupling the un- 
known variables proves to be not so straightforward. 
Therefore, we will suggest a different approach based 
on estimating an upper bound for the noise variance 
and a lower bound for the signal variance which, in 
turn, will allow us to separate the noise process by 
setting a threshold value. 

Before, proceeding with variance estimations, we 
shall recall that, since the cross power spectrum has 
been normalized, we will be only interested in the nor- 
malized values of the variances taking values in the 
interval [0,1]. Now, consider the case when the image 
dimensions are X x Y. Then, since the non-overlapped 
regions are of subpixel width (see Figure 2) and also 
since the noise power is given by the percentage of 
non-overlapped area in each image, we can estimate 
the following upper bound for the noise variance: 

Similarly, a lower bound for the total signal power 
would be: 

These estimations are based on the schematic diagram 
in Figure 2: 

maximum width = 1 pixel 

X *___---___--___--___--~---~~---~~---~--* 

Non-overlaooed Area 
‘ 1  

Non-overlapped Area 
in image 2 

Figure 2: Overlay of two images 
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Therefore, the minimum signal to noise ratio can be 
found by: 

I t  is obvious that for subpixel shifts the SNR is 
very large. Therefore, the choice of a noise threshold 
value T, is not a great concern, although in the next 
section we will provide a rigorous method of choosing 
it. Thus, the signal is simply detected by using: 

c ( x ,  Y) = co(2, Y) if c&, Y) > T, (17) 

Once c ( x , y )  has been estimated, (10,yo) can be 
calculated by straight application of equation (12) to  
a set of points. Note, however, that results will be 
more reliable if equation (12) is applied to  points 
where the signal power is mostly concentrated (see 
next section). In fact for two images with displace- 
ments at  subpixel order, the signal energy is expected 
to be mostly concentrated between pixels in the area 
[-1, I] x [-I, 11 (negative pixel locations follow the pe- 
riodicity assumption, eg. pixel ( - 1 , O )  corresponds to 

We will illustrate the method using an example: 

Consider the situation where the signal power is 
mostly concentrated at  pixels (O,O), ( 1 , O )  and (0 , l ) .  
Then applying equation (12) to the first two points 
will yield: 

( X  - 1,O)). 

3.3 Error Analysis 

For the error analysis, we can use a method similar 
to  the one adopted by [lo]. The only difference here, 
is that the signal power is not concentrated in a single 
coherent peak, but due to  the polyphase decomposi- 
tion of the cross power spectrum, it is distributed in 
a set of coherent peaks mostly adjacent to each other. 
In fact this is nicely described by equations (7) and 
(12) above. 

Since we have assumed a normal distribution of the 
noise around a mean value of zero, the probability that 
the noise value exceeds T, will be given by: 

The last equality is due to normalization of the cross 
power spectrum between zero and one. 

On the other hand, in this interval, we can write 
the following inequality: 

This inequality follows from the fact that ,  in'th; 
interval where the integrals have been taken, the inte- 
grand on the left hand side is always larger than the 
integrand on the right hand side, Therefore substitut- 
ing equation (23) into (24) and computing the integral 
on the right hand side, we will obtain: 

dividing both sides and rearranging, we get: 

(20) 
sin(s(A4 + I o ) )  c(1,O) sin(7rzo) 

s ( M  +zo) c(0,O) sxo  

-fsin(7rxo) --- C(1,O) sin(sc0) 
( M + I O )  C ( 0 , O )  2 0  

-L___ 
- - 

Or : 

(21) - 

And after simplifying we obtain: 

2 0  C(l,O> 
M fc(0,O) - C(1,O) 
- =  

where A x  = $ is the subpixel displacement along the 
x-axis. Note that,  no knowledge of the downsampling 
rate M is required. Note also that two solutions will be 
obtained. This ambiguity is due to the isotropic form 
of c ( x ,  y) and, in fact, only one of these splutions (ie. 
the right solution) is in the interval [-1, 1J. Similarly, 
we can find Ay = 9 by using, for instance, c(0,O) and 
4 0 ,  1). 

And after rearranging and simplifying, we will have: 

Therefore, for small probability values P T ~ ( ~ ) ,  we 
can remove noise by thresholding out values below Tq , 
To choose a value for '&,(q), consider the non-trivial 
case of inequality (26), ie. when: 

Therefore, the upper bound of PT,(q) is found by sub- 
stituting the upper bound of the noise variance in (28). 
I t  is obvious that the right hand side of the above in- 
equality is always in [0, 13. 
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4 Experimental Results 

111 order to verify experimentally the algorithm. 
soriie artifitiall) shifted imagcs were generated using 
the following model: 

f, = h ~f 1, i = franie number (293 

where T, is a high rcsolution imagc shifted by dif- 
f e r ( ~  values, h is a t)lurring kernel and 3 denotes tlie 
convolution. h has been introduced to demolistrate 
the. pos4bility of taking into account thc point spread I . . \  

function of the imaging system. I “I  
i 

Therefore. each frame f; is obtained bv shifting 7 

a high rc:solution imagc foiiowed by convol;t ion andv 
downsa~npling. ‘l’he rate of . downsampling . .  . aloiig each 
dimension is larger than the shift values so that the 
resulting downsampled images contain subpixel shifts. 
Note that ,  no knowledge of the blurring kernel is re- 
quired for the registration. The only assumption made 
on h is that its response is invariant from one frame 
to  another. 

The algorithm was tested on several images of dif- 
ferent nature. Figure 3 .  shows an example of two 
aerial images with subpixel shifts between them. Fig- 
ure 3 (c) and (d) show their cross power spectrum 
in the spatial domain prior and after removal of noise. 
Note that, due to  the subpixel nature of the correspon- 
dence, there is no single coherent peak (as was the case 
for integer displacements). Instead, the signal power 
is distributed in the form of polyphase components of 
a 2D sinc function centered a t  the point of correspon- 
dence. This has been shown, more prominently, in 
Figure 3 (e), where a zoom in the area [ - 3 , 3 ]  x [-3,3] 
of Figure 4 (d) has been displayed (recall that nega- 
tive pixel values are due to  periodicity). 

(e> 
Figure 3: (a) & (b) aerial images with subpixel dis- 
placements, (c) & (d cross power spectra before and 
after noise removal ? spatial domain), (e ) a zoom in 
the area where the signal power is mostly concentrated 
in figure 3(d) 

Since the amplitude of a sinc function reduces 
rapidly as we part from its centre, i t  is obvious that 
some terms have been thresholded out as their ampli- 
tudes could not be distinguished with that of noise. 
However, due to  the large value of SNR the major- 
ity of the signal power is recovered with no difficulty, 
around the peak point of the sinc function and its ad- 
jacent sidelobes (ie. a t  the points where the subpixel 
shifts are calculated). 

In Figure 4, some of the images to  which the al- 
gorithm was applied has been shown. The algorithm 
was also tested on many other images including indoor 
and outdoor robotic environments, with some of the 
results summarized in Table 1. We have also tested 
the method on many images with different dynamic 
ranges and artificially modified RGB combinations. 
These tests verify the independency of the algorithm 
from spectral modulus (ie. phase corrrelation only). 
Results on the SPOT image, for instance, are shown 
in Figure 5 and table 2. 

(c) 
Figure 4: Some of the images uesed for experii 
tion: (a) & (b), aerial images of Pentagon and 
(c) a SPOT satellite image 

nenta- 
Paris, 
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as we approach the lower limit of the signal to noise 
ratio. We will investigate this issue in future work. 

I( ‘(0.25, 0.33)’ 1 ‘(0.30, O.:w 
Table 1: Table of results for images in figure 4 

Figure 5: (a) & (b) two satellite images with1 modified 
dynamic ranges and RGB combinations 

I lmage 11 (Az,Ay) 1 Estimates 
I II (0.83, 0.25) I (0.83, 0 . 3 C 1  

(0.33, -0.50) 0.34, -0.53 // (-0.83, 0.167) 1 (-0.84, O.l!j) 1 
(0.25, 0.33) (0.29. 0.341) 1 

Table 2: Table of results for images with different dy- 
namic ranges and RGB combinations 

5 Conclusion 

A method of determining subpixel shifts, has been 
proposed, herein, which does not resort to interpola- 
tion. The method is based on the phase correlation, 
and is proved to  be very robust to correlated noise and 
luminance variations. Note that,  methods that rely on 
interpolation would require an interpolation by a fac- 
tor of 100, if one needs, for example, an accuracy of 
up to 2 significant figures. Results would, obviously, 
highly depend on the interpolation method. 

Although, our analyses seem to be elaborated, the 
algorithm is hardly more complicated than the phase 
correlation method. The only overhead computations 
are noise removal and the calculation of the shifts 
(&,Ay),  which are trivial. Therefore, the speed of 
the algorithm, mainly depends on the Fourier trans- 
form, for which we have employed the FFT algorithm. 

The accuracy of the results, depends on the noise 
variance, or more precisely on the signal to  noise ratio. 
In other words, we would expect less accurate results 
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